

US-China SM Workshop, HUAZHONG University of Science and Technology, Wuhan, March 13-15, 2014

Method and Application of Sustainable Design for Energy and Material Saving Based on Energy Flow Analysis

Accosiate Prof. XIANG Dong Dr. MOU Peng

March 14, 2014

Members of GM Laboratory

Prof. DUAN Guanghong

Associate Prof.

XIANG Dong

Associate Prof. LIU Xueping

Assistant Researcher MOU Peng

- 4 Staff
- 6 PHD candidates, 5 Master graduate students
- Cultivated 21 masters and 10 doctors.

GM Laboratory

TOPSEARCH

The first green manufacturing research center between university and enterprise in China(2001).

2001: Establishment Ceremony of Tsinghua Topsearch R&D Center

Tsinghua University, Beijing, China

GM Laboratory

2011: Tsinghua - Changhong Joint Laboratory of Advanced Audiovisual Technology

Research areas

Green Design modeling based on production system

Project

• NSFC Key Project: Green design theory and method for electromechanical products

NSFC (2000-2003)

Driving Forces of Green Design

Green Design Integrated Software Platform

Main interface Conceptual design LCA analysis Modular design Design based on energy flow

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Design for disassembling

Disassembly planning and management

Introduction

Disassemble Feasibility Information Graph (DFIG)

Disassembly Planning on CAD Platform

Ant Colony Optimization (ACO)

Application in CRT disassembling line

Stratified failure and optimization of disassembling

Ultrasound scan and SEM of disassembled IC chips

Popcorn effect

Stratifying Mechanism

Diffusing of Humidity

FEA Analysis of Drying Process

PCB disassembling

Industrialized of PCB Disassembling Equipment

- Reusable components exceed 92%
- Disassembling rate exceed 98% (Tested by China Household Electrical Appliances Association- CHEAA)

PCB disassembling equipment and disassembled components

PCB recycling

PCB recycling process

PCB recycling

PCB recycling factory

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Shaoguan, Guangdong Province (Demonstration Base of National 863 Program)

Reuse of PCB nonmetals

Research and application

PCB nonmetals

M-1000_0068 2008-04-03 15:36

20 um TM-1000_0056

2008-04-03 15:25

Morphology of PCB nonmetals

Traffic Signs (BEI Jing)

Surf boat

Grates

Mechanochemistry Regeneration Technology of Waste Rubber

Black pollution

- The annual amount of waste tyres reach to 0.2 billion;
- The weight of waste tyres has exceeds 3 million tons;

• Waste rubber products accounts for 1% of the total industrial solid waste;

Rubber particles after fine grinding, surface activation and re-grinding

年处理2万吨废轮胎生产精细胶粉成套设备生产线

年处理2万吨废轮胎生产精细胶粉成套设备生产线-轮胎输送

Background Energy Consumption and Production of China

Energy Security and Energy Crisis

Output of three major energy-consuming products

Background

Background Energy Security and Energy Crisis

Problem

- According to statistics of CMEMA (China Machinery Enterprise Management Association), 21 major industrial products consumed 70% of the total energy production.
- Design for energy and material saving becomes a research focus for these years.

Research

Energy flow modeling

Product Design Based on Energy Flow

Transportation evolution:

From Bicycle Kingdom to Auto Kingdom

Www.green-design.org Green Manufacturing Laboratory Tsinghua University, Beijing, China

GM Lab

Product Design Based on Energy Flow

GM Lab www.green-design.org Green Manufacturing Laboratory Tsinghua University, Beijing, China

Modeling of SUV Frontal collision

$$\Omega_{PC2} = \langle S_{p2}, P_2 \rangle$$

- S_{p2} Object: lightweight design for energy saving
 - P_2 Object: Passive security under frontal collision
- Ω_{PC2} Realizing lightweight without lowering passive security

Lightweight Design Based on Passive safety

R: Deformation or fracture of components and parts

Tsinghua University, Beijing, China

Product Design Based on Energy Flow

Energy flowing process

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Definition of Energy Flow Element (EFE)

$$EFE = (D, T, \Delta E)$$

- *D* : Collection of components and parts in EFEs;
- *T* : Interface relations among EFEs;
- • ΔE : Energy change during performance realization;

EFE Division

Product Design Based on Energy Flow

EFE Division Instance

Components and parts reduced from 400 to 87

EFE Division Results

No.	Parts No. in EFE		
EFE1	1,2,3,4,84		
EFE2	5,6		
EFE3	38,39		
EFE4	7		
EFE5	12,25,26		
EFE6	44,54,55		
EFE7	78,79,81		
EFE8	82,83		
EFE9	80,87		
EFE10	8,21,24,27		
EFE11	40,53,56,57		
EFE12	37,61-64,66-69		
EFE13	60,70-72,74-77		
EFE14	13,14,65,85		
EFE15	45,46,73,86		
EFE16	11,15,16,19,20,22,23,28,35,36		
EFE17	35,36,43,47-52,58		
EFE18	9,10,17,18,29-34,41,42,59		

EFE interface relation

$$T = \left[\left(NO_i, ST_i, A_i \right) \right]_N$$

- NO_i: Relation between current EFE with ith EFE, 1 or 0 ;
- ST_i : Interface status, 1 or 0;
- A : Action form, , 1 or 0;

Instance Product Design Based on Energy Flow

EFE Interface relation of automobile at Frontal collision

 Quantify the impact on energy flow when parts changes

Performance Pertinences

• Quantify the rationality of energy flows between different parts

Performance Margins

Definition Product Design Based on Energy Flow

- Performance Pertinences
 - The impact degree of part parameters changing on the change of energy.

Definition **Product Design Based on Energy Flow**

Performance Margins

The deviation between energy changing and ideal expected value.

$$P_{\eta} = \eta \times \left(\zeta_{\Delta e} - E(\zeta_{\Delta e}) \right)$$

- P_n **Performance margins of parts**
- $\zeta_{\Delta e}$ Allocation ration of energy changing
- $E(\zeta_{\Lambda e})$ Expected value of ideal distribution

Tsinghua University, Beijing, China

Definition

Product Design Based on Energy Flow

Calculation results of performance margins

Current automobile

Referenced automobile

Performance Margins: Results

EFE1-4: potential parts for lightweight design

Conclusion

Product Design Based on Energy Flow

Results of optimization

 Weight (Longitudinal and its accessories) reduced from 32.64kg to 30.92kg (5.3%)

Results

Product Design Based on Energy Flow

Comparison of Crush Test

Unimproved Frame NCAP:★★☆

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Improved Frame NCAP: * * *

Product Design Based on Energy Flow

Typical Application – Air Conditioner

Design Objective

- Energy Saving
- Noise Reduction

Energy Flowing Model of Air Duct System

R : Resistant Compoent I : Inertial Component

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Product Design Based on Energy Flow

EFE Division

No.	Parts No. in EFE		
EFE1	D1		
EFE2	D2, D5, D6		
EFE3	D3, D4, D8, D9		
EFE4	D7		

Product Design Based on Energy Flow

Comparison of Crush Test

Model	Performance indicators				
	rotation rate	Power	Actual airflow	Theoretical airflow	Noise
Original	800rpm	70w	1640m ³ /h	1710m ³ /h	51dB(A)
Optimized	800rpm	70w	1718m3/h	1794m ³ /h	49.8dB(A)

Wind Turbine

Reliability Design Based on Energy Flow

Tsinghua University, Beijing, China

National strategy

- Long-term Development Planning for Renewable Energy
- National long-term Scientific and Technological Development

Rapid development of wind power industry

- Available wind energy resources: **2.4 billion KW**;
- New installed wind turbine in 2011: 18GW (40% of the world) and the total installed capacity have reached to 62.7 GW;
- 7 new planed 10 million kw-level wind farm are under construction and the total investment exceed 300 billion RMB;

Wind Turbine

Reliability Design based on Energy Flow

Abroad

Environment	High Standards	Complicated System
 ≻installation site ≻Heavy working condition 	 Service for 20 Years; High reliability Security 	 Hundreds of tons Dozens of sub-system Mechanical, electronical and material science

China

3MW - level (Design and manufacturing)Design for 10-15-20 MW-levelService lifeService life improve to 25-40 yearsCore components rely on importsService life improve to 25-40 years

Wind Turbine Reliability Design based on Energy Flow

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Wind Turbine **Reliability Design based on Energy Flow**

Degradation caused by complicated condition

Transmission system

- Frequent Low-speed start
- Alternating high and low temperature
- Impact load
- Low speed and heavy load

Performance degradation

Tsinghua University, Beijing, China

Wind Turbine Reliability Design based on Energy Flow

Failure evolution and reliability

Analyzing in energy field:

- Macroscopic: transfer and convert mechanical energy
- Microscopic: a dissipation process of energy

Green Manufacturing Laboratory Tsinghua University, Beijing, China

Technical Route

GM Lab www.green-design.org Green Manufacturing Laboratory Tsinghua University, Beijing, China

Tsinghua University

Department of Mechanical Engineering Institute of Manfucturing Engineering Green Manufacturing Laboratory

Website: <u>www.green-design.org</u> Tel: 0086 10 6277 3517

Prof. DUAN Guanghong Dr. Associate Prof. XAING Dong Dr. Assistant Research Fellow MOU Peng

机械工程系

Department of Mechanical Engineering

Thank you for your attention!